ibllib.pipes.widefield_tasks
The widefield data extraction pipeline.
The widefield pipeline requires task data extraction using the FPGA (ephys_preprocessing), optogenetics, camera extraction and widefield image data compression, SVD and correction.
- Pipeline:
Data renamed to be ALF-compliant and symlinks created with old names for use by wfield
Raw image data is compressed
Renamed and compressed files are registered to Alyx, imaging snapshots attached as Alyx notes
Preprocessing run to produce
Classes
- class WidefieldRegisterRaw(session_path, **kwargs)[source]
Bases:
WidefieldTask
,RegisterRawDataTask
- priority = 100
- job_size = 'small'
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns:
- class WidefieldCompress(session_path, **kwargs)[source]
Bases:
WidefieldTask
- priority = 90
- job_size = 'large'
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns:
- class WidefieldPreprocess(session_path, **kwargs)[source]
Bases:
WidefieldTask
- priority = 80
- job_size = 'large'
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns:
- class WidefieldSync(session_path, **kwargs)[source]
Bases:
WidefieldTask
- priority = 40
- job_size = 'small'
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns:
- class WidefieldFOV(session_path, **kwargs)[source]
Bases:
WidefieldTask
- priority = 40
- job_size = 'small'
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns: