Source code for ibllib.pipes.widefield_tasks

"""The widefield data extraction pipeline.

The widefield pipeline requires task data extraction using the FPGA (ephys_preprocessing),
optogenetics, camera extraction and widefield image data compression, SVD and correction.

Pipeline:
    1. Data renamed to be ALF-compliant and symlinks created with old names for use by wfield
    2. Raw image data is compressed
    3. Renamed and compressed files are registered to Alyx, imaging snapshots attached as Alyx notes
    4. Preprocessing run to produce
"""
import logging

from ibllib.io.extractors.widefield import Widefield as WidefieldExtractor
from ibllib.pipes import base_tasks
from ibllib.io.video import get_video_meta
from ibllib.plots.snapshot import ReportSnapshot


_logger = logging.getLogger(__name__)

try:
    import labcams.io
except ImportError:
    _logger.warning('labcams not installed')


[docs] class WidefieldRegisterRaw(base_tasks.WidefieldTask, base_tasks.RegisterRawDataTask): priority = 100 job_size = 'small' @property def signature(self): signature = { 'input_files': [('dorsal_cortex_landmarks.json', self.device_collection, False), ('*.camlog', self.device_collection, True), ('widefield_wiring.htsv', self.device_collection, False)], 'output_files': [('widefieldLandmarks.dorsalCortex.json', 'alf/widefield', False), ('widefieldEvents.raw.camlog', self.device_collection, True), ('widefieldChannels.wiring.htsv', self.device_collection, False)] } return signature def _run(self, symlink_old=True): out_files = super()._run(symlink_old=symlink_old) self.register_snapshots() return out_files
[docs] class WidefieldCompress(base_tasks.WidefieldTask): priority = 90 job_size = 'large' @property def signature(self): signature = { 'input_files': [('*.dat', self.device_collection, True)], 'output_files': [('imaging.frames.mov', self.device_collection, True)] } return signature def _run(self, remove_uncompressed=False, verify_output=True, **kwargs): # Find raw data dat file filepath = next(self.session_path.rglob(self.input_files[0].glob_pattern)) # Construct filename for compressed video output_file = self.session_path.joinpath(self.output_files[0].glob_pattern) # Compress to mov stack = labcams.io.mmap_dat(str(filepath)) labcams.io.stack_to_mj2_lossless(stack, str(output_file), rate=30) assert output_file.exists(), 'Failed to compress data: no output file found' if verify_output: meta = get_video_meta(output_file) assert meta.length > 0 and meta.size > 0, f'Video file empty: {output_file}' if remove_uncompressed: filepath.unlink() return [output_file]
# level 1
[docs] class WidefieldPreprocess(base_tasks.WidefieldTask): priority = 80 job_size = 'large' @property def signature(self): signature = { 'input_files': [('imaging.frames.*', self.device_collection, True), ('widefieldEvents.raw.*', self.device_collection, True)], 'output_files': [('widefieldChannels.frameAverage.npy', 'alf/widefield', True), ('widefieldU.images.npy', 'alf/widefield', True), ('widefieldSVT.uncorrected.npy', 'alf/widefield', True), ('widefieldSVT.haemoCorrected.npy', 'alf/widefield', True)] } return signature def _run(self, upload_plots=True, **kwargs): self.wf = WidefieldExtractor(self.session_path) _, out_files = self.wf.extract(save=True, extract_timestamps=False) if upload_plots: output_plots = [] if self.wf.data_path.joinpath('hemodynamic_correction.png').exists(): output_plots.append(self.wf.data_path.joinpath('hemodynamic_correction.png')) if self.wf.data_path.joinpath('motion_correction.png').exists(): output_plots.append(self.wf.data_path.joinpath('motion_correction.png')) if len(output_plots) > 0: eid = self.one.path2eid(self.session_path) snp = ReportSnapshot(self.session_path, eid, one=self.one) snp.outputs = output_plots snp.register_images(widths=['orig'], function='wfield') return out_files
[docs] def tearDown(self): super(WidefieldPreprocess, self).tearDown() self.wf.remove_files()
[docs] class WidefieldSync(base_tasks.WidefieldTask): priority = 40 job_size = 'small' @property def signature(self): signature = { 'input_files': [('imaging.frames.mov', self.device_collection, True), ('widefieldEvents.raw.camlog', self.device_collection, True), (f'_{self.sync_namespace}_sync.channels.npy', self.sync_collection, True), (f'_{self.sync_namespace}_sync.polarities.npy', self.sync_collection, True), (f'_{self.sync_namespace}_sync.times.npy', self.sync_collection, True)], 'output_files': [('imaging.times.npy', 'alf/widefield', True), ('imaging.imagingLightSource.npy', 'alf/widefield', True), ('imagingLightSource.properties.htsv', 'alf/widefield', True)] } return signature def _run(self): self.wf = WidefieldExtractor(self.session_path) save_paths = [self.session_path.joinpath(sig[1], sig[0]) for sig in self.signature['output_files']] out_files = self.wf.sync_timestamps(bin_exists=False, save=True, save_paths=save_paths, sync_collection=self.sync_collection) # TODO QC return out_files
[docs] class WidefieldFOV(base_tasks.WidefieldTask): priority = 40 job_size = 'small' @property def signature(self): signature = { 'input_files': [('widefieldLandmarks.dorsalCortex.json', 'alf/widefield', True), ('widefieldU.images.npy', 'alf/widefield', True), ('widefieldSVT.haemoCorrected.npy', 'alf/widefield', True)], 'output_files': [('widefieldU.images_atlasTransformed.npy', 'alf/widefield', True), ('widefieldU.brainLocationIds_ccf_2017.npy', 'alf/widefield', True)] } return signature def _run(self): outfiles = [] # from wfield import load_allen_landmarks, SVDStack, atlas_from_landmarks_file # from iblatlas.regions import BrainRegions # from iblutil.numerical import ismember # import numpy as np # U = np.load(self.session_path.joinpath('alf/widefield', 'widefieldU.images.npy')) # SVT = np.load(self.session_path.joinpath('alf/widefield', 'widefieldSVT.haemoCorrected.npy')) # lmark_file = self.session_path.joinpath('alf/widefield', 'widefieldLandmarks.dorsalCortex.json') # landmarks = load_allen_landmarks(lmark_file) # # br = BrainRegions() # # stack = SVDStack(U, SVT) # stack.set_warped(1, M=landmarks['transform']) # # atlas, area_names, mask = atlas_from_landmarks_file(lmark_file) # atlas = atlas.astype(np.int32) # wf_ids = np.array([n[0] for n in area_names]) # allen_ids = np.array([br.acronym2id(n[1].split('_')[0], mapping='Allen-lr', hemisphere=n[1].split('_')[1])[0] # for n in area_names]) # # atlas_allen = np.zeros_like(atlas) # a, b = ismember(atlas, wf_ids) # atlas_allen[a] = allen_ids[b] # # file_U = self.session_path.joinpath('alf/widefield', 'widefieldU.images_atlasTransformed.npy') # np.save(file_U, stack.U_warped) # outfiles.append(file_U) # # # Do we save the mask?? # file_atlas = self.session_path.joinpath('alf/widefield', 'widefieldU.brainLocationIds_ccf_2017.npy') # np.save(file_atlas, atlas_allen) # outfiles.append(file_atlas) return outfiles