ibllib.plots.figures
Module that produces figures, usually for the extraction pipeline
Functions
Creates DLC QC plot. |
|
Function to remove outline of empty axis |
|
Function to normalise size of all axis labels |
Classes
Plots AP RMS plots |
|
Plots raw electrophysiology AP band task = BadChannelsAp(pid, one=one=one) |
|
Behavioural plots. |
|
Plots coronal and sagittal slice showing electrode locations. |
|
Plots LFP spectrum and LFP RMS plots |
|
Plots raw electrophysiology AP band |
- set_axis_label_size(ax, labels=14, ticklabels=12, title=14, cmap=False)[source]
Function to normalise size of all axis labels
- Parameters:
ax
labels
ticklabels
title
cmap
- Returns:
- class BehaviourPlots(eid, session_path=None, one=None, **kwargs)[source]
Bases:
ReportSnapshot
Behavioural plots.
- property signature
The signature of the task specifies inputs and outputs for the given task. For some tasks it is dynamic and calculated. The legacy code specifies those as tuples. The preferred way is to use the ExpectedDataset input and output constructors.
I = ExpectedDataset.input O = ExpectedDataset.output signature = {
- ‘input_files’: [
I(name=’extract.me.npy’, collection=’raw_data’, required=True, register=False, unique=False),
], ‘output_files’: [
O(name=’look.atme.npy’, collection=’shiny_data’, required=True, register=True, unique=False)
]} is equivalent to: signature = {
‘input_files’: [(‘extract.me.npy’, ‘raw_data’, True, True)], ‘output_files’: [(‘look.atme.npy’, ‘shiny_data’, True)], }
- Returns:
- class HistologySlices(pid, session_path=None, one=None, brain_regions=None, brain_atlas=None, **kwargs)[source]
Bases:
ReportSnapshotProbe
Plots coronal and sagittal slice showing electrode locations.
- class LfpPlots(pid, session_path=None, one=None, brain_regions=None, brain_atlas=None, **kwargs)[source]
Bases:
ReportSnapshotProbe
Plots LFP spectrum and LFP RMS plots
- class ApPlots(pid, session_path=None, one=None, brain_regions=None, brain_atlas=None, **kwargs)[source]
Bases:
ReportSnapshotProbe
Plots AP RMS plots
- class SpikeSorting(pid, session_path=None, one=None, brain_regions=None, brain_atlas=None, **kwargs)[source]
Bases:
ReportSnapshotProbe
Plots raw electrophysiology AP band
- Parameters:
session_path – session path
probe_id – str, UUID of the probe insertion for which to create the plot
**kwargs –
keyword arguments passed to tasks.Task
- class BadChannelsAp(pid, session_path=None, one=None, brain_regions=None, brain_atlas=None, **kwargs)[source]
Bases:
ReportSnapshotProbe
Plots raw electrophysiology AP band task = BadChannelsAp(pid, one=one=one)
- Parameters:
session_path – session path
probe_id – str, UUID of the probe insertion for which to create the plot
**kwargs –
keyword arguments passed to tasks.Task
- ephys_bad_channels(raw, fs, channel_labels, channel_features, h=None, channels=None, title='ephys_bad_channels', save_dir=None, destripe=False, eqcs=None, br=None, pid_info=None, plot_backend='matplotlib')[source]
- raw_destripe(raw, fs, t0, i_plt, n_plt, fig=None, axs=None, savedir=None, detect_badch=True, SAMPLE_SKIP=200, DISPLAY_TIME=0.05, N_CHAN=384, MIN_X=-0.00011, MAX_X=0.00011)[source]
- Parameters:
raw – raw ephys data, Ns x Nc, x-axis: time (s), y-axis: channel
fs – sampling freq (Hz) of the raw ephys data
t0 – time (s) of ephys sample beginning from session start
i_plt – increment of plot to display image one (start from 0, has to be < n_plt)
n_plt – total number of subplot on figure
fig – figure handle
axs – axis handle
savedir – filename, including directory, to save figure to
detect_badch – boolean, to detect or not bad channels
SAMPLE_SKIP – number of samples to skip at origin of ephsy sample for display
DISPLAY_TIME – time (s) to display
N_CHAN – number of expected channels on the probe
MIN_X – max voltage for color range
MAX_X – min voltage for color range
- Returns:
fig, axs
- dlc_qc_plot(session_path, one=None, device_collection='raw_video_data', cameras=('left', 'right', 'body'), trials_collection='alf')[source]
Creates DLC QC plot. Data is searched first locally, then on Alyx. Panels that lack required data are skipped.
- Required data to create all panels
‘raw_video_data/_iblrig_bodyCamera.raw.mp4’, ‘raw_video_data/_iblrig_leftCamera.raw.mp4’, ‘raw_video_data/_iblrig_rightCamera.raw.mp4’, ‘alf/_ibl_bodyCamera.dlc.pqt’, ‘alf/_ibl_leftCamera.dlc.pqt’, ‘alf/_ibl_rightCamera.dlc.pqt’, ‘alf/_ibl_bodyCamera.times.npy’, ‘alf/_ibl_leftCamera.times.npy’, ‘alf/_ibl_rightCamera.times.npy’, ‘alf/_ibl_leftCamera.features.pqt’, ‘alf/_ibl_rightCamera.features.pqt’, ‘alf/rightROIMotionEnergy.position.npy’, ‘alf/leftROIMotionEnergy.position.npy’, ‘alf/bodyROIMotionEnergy.position.npy’, ‘alf/_ibl_trials.choice.npy’, ‘alf/_ibl_trials.feedbackType.npy’, ‘alf/_ibl_trials.feedback_times.npy’, ‘alf/_ibl_trials.stimOn_times.npy’, ‘alf/_ibl_wheel.position.npy’, ‘alf/_ibl_wheel.timestamps.npy’, ‘alf/licks.times.npy’,
- Params session_path:
Path to session data on disk
- Params one:
ONE instance, if None is given, default ONE is instantiated
- Returns:
Matplotlib figure