ibllib.io.extractors.ephys_passive
Functions
Find whether the task replay portion of the passive stimulus has been shown |
Classes
- skip_task_replay(session_path: str, task_collection: str = 'raw_passive_data') bool [source]
Find whether the task replay portion of the passive stimulus has been shown
- Parameters:
session_path (str) – the path to a session
task_collection (str) – collection containing task data
- Returns:
whether or not the task replay has been run
- Return type:
bool
- extract_passive_periods(session_path: str, sync_collection: str = 'raw_ephys_data', sync: dict = None, sync_map: dict = None, tmin=None, tmax=None) DataFrame [source]
- extract_rfmapping(session_path: str, sync_collection: str = 'raw_ephys_data', task_collection: str = 'raw_passive_data', sync: dict = None, sync_map: dict = None, trfm: array = None) Tuple[array, array] [source]
- extract_task_replay(session_path: str, sync_collection: str = 'raw_ephys_data', task_collection: str = 'raw_passive_data', sync: dict = None, sync_map: dict = None, treplay: array = None) Tuple[DataFrame, DataFrame] [source]
- extract_replay_debug(session_path: str, sync_collection: str = 'raw_ephys_data', task_collection: str = 'raw_passive_data', sync: dict = None, sync_map: dict = None, treplay: array = None, ax: axes = None) Tuple[DataFrame, DataFrame] [source]
- class PassiveChoiceWorld(session_path=None)[source]
Bases:
BaseExtractor
- save_names = ('_ibl_passivePeriods.intervalsTable.csv', '_ibl_passiveRFM.times.npy', '_ibl_passiveGabor.table.csv', '_ibl_passiveStims.table.csv')
The filenames of each extracted dataset, or None if array should not be saved.
- Type:
tuple of str
- var_names = ('passivePeriods_df', 'passiveRFM_times', 'passiveGabor_df', 'passiveStims_df')
A list of names for the extracted variables. These become the returned output keys.
- Type:
tuple of str