import logging
import numpy as np
from ibllib.io.extractors import biased_trials
from ibllib.io.extractors.base import BaseBpodTrialsExtractor
_logger = logging.getLogger(__name__)
[docs]
class LaserBool(BaseBpodTrialsExtractor):
"""
Extracts the laser probabilities from the bpod jsonable
"""
save_names = ('_ibl_trials.laserStimulation.npy', '_ibl_trials.laserProbability.npy')
var_names = ('laserStimulation', 'laserProbability')
def _extract(self, **kwargs):
_logger.info('Extracting laser datasets')
# reference pybpod implementation
lstim = np.array([float(t.get('laser_stimulation', np.NaN)) for t in self.bpod_trials])
lprob = np.array([float(t.get('laser_probability', np.NaN)) for t in self.bpod_trials])
# Karolina's choice world legacy implementation - from Slack message:
# it is possible that some versions I have used:
# 1) opto_ON_time (NaN - no laser or some number-laser)
# opto_ON_time=~isnan(opto_ON_time)
# laserON_trials=(opto_ON_time==1);
# laserOFF_trials=(opto_ON_time==0);
# 2) optoOUT (0 - no laser or 255 - laser):
# laserON_trials=(optoOUT ==255);
# laserOFF_trials=(optoOUT ==0);
if 'PROBABILITY_OPTO' in self.settings.keys() and np.all(np.isnan(lstim)):
lprob = np.zeros_like(lprob) + self.settings['PROBABILITY_OPTO']
lstim = np.array([float(t.get('opto_ON_time', np.NaN)) for t in self.bpod_trials])
if np.all(np.isnan(lstim)):
lstim = np.array([float(t.get('optoOUT', np.NaN)) for t in self.bpod_trials])
lstim[lstim == 255] = 1
else:
lstim[~np.isnan(lstim)] = 1
lstim[np.isnan(lstim)] = 0
if np.all(np.isnan(lprob)):
# this prevents the file from being saved when no data
self.save_names = ('_ibl_trials.laserStimulation.npy', None)
_logger.warning('No laser probability found in bpod data')
if np.all(np.isnan(lstim)):
# this prevents the file from being saved when no data
self.save_names = (None, '_ibl_trials.laserProbability.npy')
_logger.warning('No laser stimulation found in bpod data')
return lstim, lprob