Source code for one.alf.io

"""I/O functions for ALyx Files.

Provides support for time-series reading and interpolation as per the specifications
For a full overview of the scope of the format, see:

https://int-brain-lab.github.io/ONE/alf_intro.html
"""

import json
import copy
import logging
import os
import re
from fnmatch import fnmatch
from pathlib import Path
from typing import Union
from functools import partial
from itertools import chain
import warnings

import numpy as np
import pandas as pd
import yaml

from iblutil.util import Bunch
from iblutil.io import parquet
from iblutil.io import jsonable
from .exceptions import ALFObjectNotFound
from . import files, spec
from .spec import FILE_SPEC

_logger = logging.getLogger(__name__)


[docs] class AlfBunch(Bunch): """A dict-like object that supports dot indexing and conversion to DataFrame""" @property def check_dimensions(self): """int: 0 for consistent dimensions, 1 for inconsistent dimensions""" return check_dimensions(self)
[docs] def append(self, b, inplace=False): """ Appends one bunch to another, key by key Parameters ---------- b : Bunch, dict A Bunch of data to append inplace : bool If true, the data are appended in place, otherwise a copy is returned Returns ------- ALFBunch, None An ALFBunch with the data appended, or None if inplace is True """ # default is to return a copy if inplace: a = self else: a = AlfBunch(copy.deepcopy(self)) # handles empty bunches for convenience if looping if b == {}: return a if a == {}: return AlfBunch(b) # right now supports only strictly matching keys. Will implement other cases as needed if set(a.keys()) != set(b.keys()): raise NotImplementedError('Append bunches only works with strictly matching keys' 'For more complex merges, convert to pandas dataframe.') # do the merge; only concatenate lists and np arrays right now for k in a: if isinstance(a[k], np.ndarray): a[k] = np.concatenate((a[k], b[k]), axis=0) elif isinstance(a[k], list): a[k].extend(b[k]) else: _logger.warning(f'bunch key "{k}" is a {a[k].__class__}. I don\'t know how to' f' handle that. Use pandas for advanced features') if a.check_dimensions != 0: print_sizes = '\n'.join(f'{v.shape},\t{k}' for k, v in a.items()) _logger.warning(f'Inconsistent dimensions for object: \n{print_sizes}') return a
[docs] def to_df(self) -> pd.DataFrame: """Return DataFrame with data keys as columns""" return dataframe(self)
[docs] @staticmethod def from_df(df) -> 'AlfBunch': data = dict(zip(df.columns, df.values.T)) split_keys = sorted(x for x in data.keys() if re.match(r'.+?_[01]$', x)) for x1, x2 in zip(*[iter(split_keys)] * 2): data[x1[:-2]] = np.c_[data.pop(x1), data.pop(x2)] return AlfBunch(data)
[docs] def dataframe(adict): """ Converts an Bunch conforming to size conventions into a pandas DataFrame. For 2-D arrays, stops at 10 columns per attribute. Parameters ---------- adict : dict, Bunch A dict-like object of data to convert to DataFrame Returns ------- pd.DataFrame A pandas DataFrame of data """ if check_dimensions(adict) != 0: raise ValueError('Can only convert to DataFrame objects with consistent size') # easy case where there are only vectors if all([len(adict[k].shape) == 1 for k in adict]): return pd.DataFrame(adict) # pandas has trouble with 2d data, chop it off with a limit of 10 columns per dataset df = pd.DataFrame() for k in adict.keys(): if adict[k].ndim == 1: df[k] = adict[k] elif adict[k].ndim == 2 and adict[k].shape[1] == 1: df[k] = adict[k][:, 0] elif adict[k].ndim == 2: for i in np.arange(adict[k].shape[1]): df[f"{k}_{i}"] = adict[k][:, i] if i == 9: break else: _logger.warning(f'{k} attribute is 3D or more and won\'t convert to dataframe') continue return df
def _find_metadata(file_alf) -> Path: """ File path for an existing meta-data file for an alf_file Parameters ---------- file_alf : str, pathlib.Path A path of existing ALF Returns ------- pathlib.Path Path of meta-data file if exists """ file_alf = Path(file_alf) ns, obj = file_alf.name.split('.')[:2] return next(file_alf.parent.glob(f'{ns}.{obj}*.metadata*.json'), None)
[docs] def read_ts(filename): """ Load time-series from ALF format Parameters ---------- filename : str, pathlib.Path An ALF path whose values to load Returns ------- numpy.ndarray An array of timestamps belonging to the ALF path object numpy.ndarray An array of values in filename Examples -------- >>> t, d = read_ts(filename) """ if not isinstance(filename, Path): filename = Path(filename) # alf format is object.attribute.extension, for example '_ibl_wheel.position.npy' _, obj, attr, *_, ext = files.filename_parts(filename.parts[-1]) try: # looking for matching object with attribute timestamps: '_ibl_wheel.timestamps.npy' (time_file,), _ = filter_by(filename.parent, object=obj, attribute='times*', extension=ext) assert time_file except (ValueError, AssertionError): name = spec.to_alf(obj, attr, ext) raise FileNotFoundError(name + ' not found! No time-scale for ' + str(filename)) ts = np.load(filename.parent / time_file) val = np.load(filename) # Ensure timestamps return ts2vec(ts, val.shape[0]), _ensure_flat(val)
def _ensure_flat(arr): """ Given a single column array, returns a flat vector. Other shapes are returned unchanged. Parameters ---------- arr : numpy.array An array with shape (n, 1) Returns ------- numpy.ndarray A vector with shape (n,) """ return arr.flatten() if arr.ndim == 2 and arr.shape[1] == 1 else arr
[docs] def ts2vec(ts: np.ndarray, n_samples: int) -> np.ndarray: """ Interpolate a continuous timeseries of the shape (2, 2) Parameters ---------- ts : numpy.array a 2x2 numpy array of the form (sample, ts) n_samples : int Number of samples; i.e. the size of the resulting vector Returns ------- numpy.ndarray A vector of interpolated timestamps """ if len(ts.shape) == 1: return ts elif ts.ndim == 2 and ts.shape[1] == 1: return ts.flatten() # Deal with MATLAB single column array if ts.ndim > 2 or ts.shape[1] != 2: raise ValueError('Array shape should be (2, 2)') # Linearly interpolate the times x = np.arange(n_samples) return np.interp(x, ts[:, 0], ts[:, 1])
[docs] def check_dimensions(dico): """ Test for consistency of dimensions as per ALF specs in a dictionary. Alf broadcasting rules: only accepts consistent dimensions for a given axis a dimension is consistent with another if it's empty, 1, or equal to the other arrays dims [a, 1], [1, b] and [a, b] are all consistent, [c, 1] is not Parameters ---------- dico : ALFBunch, dict Dictionary containing data Returns ------- int Status 0 for consistent dimensions, 1 for inconsistent dimensions """ supported = (np.ndarray, pd.DataFrame) # Data types that have a shape attribute shapes = [dico[lab].shape for lab in dico if isinstance(dico[lab], supported) and not lab.startswith('timestamps')] first_shapes = [sh[0] for sh in shapes] # Continuous timeseries are permitted to be a (2, 2) timeseries = [k for k, v in dico.items() if k.startswith('timestamps') and isinstance(v, np.ndarray)] if any(timeseries): for key in timeseries: if dico[key].ndim == 1 or (dico[key].ndim == 2 and dico[key].shape[1] == 1): # Should be vector with same length as other attributes first_shapes.append(dico[key].shape[0]) elif dico[key].ndim > 1 and dico[key].shape != (2, 2): return 1 # ts not a (2, 2) arr or a vector ok = len(first_shapes) == 0 or set(first_shapes).issubset({max(first_shapes), 1}) return int(ok is False)
[docs] def load_file_content(fil): """ Returns content of files. Designed for very generic file formats: so far supported contents are `json`, `npy`, `csv`, `(h)tsv`, `ssv`, `jsonable` Parameters ---------- fil : str, pathlib.Path File to read Returns ------- Any Array/json/pandas dataframe depending on format """ if not fil: return fil = Path(fil) if fil.stat().st_size == 0: return if fil.suffix == '.csv': return pd.read_csv(fil).squeeze('columns') if fil.suffix == '.json': try: with open(fil) as _fil: return json.loads(_fil.read()) except Exception as e: _logger.error(e) return None if fil.suffix == '.jsonable': return jsonable.read(fil) if fil.suffix == '.npy': return _ensure_flat(np.load(file=fil, allow_pickle=True)) if fil.suffix == '.npz': arr = np.load(file=fil) # If single array with the default name ('arr_0') return individual array return arr['arr_0'] if set(arr.files) == {'arr_0'} else arr if fil.suffix == '.pqt': return parquet.load(fil)[0] if fil.suffix == '.ssv': return pd.read_csv(fil, delimiter=' ').squeeze('columns') if fil.suffix in ('.tsv', '.htsv'): return pd.read_csv(fil, delimiter='\t').squeeze('columns') if fil.suffix in ('.yml', '.yaml'): with open(fil, 'r') as _fil: return yaml.safe_load(_fil) if fil.suffix == '.sparse_npz': try: import sparse return sparse.load_npz(fil) except ModuleNotFoundError: warnings.warn(f'{Path(fil).name} requires the pydata sparse package to load.') return Path(fil) return Path(fil)
def _ls(alfpath, object=None, **kwargs) -> (list, tuple): """ Given a path, an object and a filter, returns all files and associated attributes Parameters ---------- alfpath : str, pathlib.Path The folder to list object : str, list An ALF object name to filter by wildcards : bool If true uses unix shell style pattern matching, otherwise uses regular expressions kwargs Other ALF parts to filter, including namespace, attribute, etc. Returns ------- list A list of ALF paths tuple A tuple of ALF attributes corresponding to the file paths Raises ------ ALFObjectNotFound No matching ALF object was found in the alfpath directory """ alfpath = Path(alfpath) if not alfpath.exists(): files_alf = attributes = None elif alfpath.is_dir(): if object is None: # List all ALF files files_alf, attributes = filter_by(alfpath, **kwargs) else: files_alf, attributes = filter_by(alfpath, object=object, **kwargs) else: object = files.filename_parts(alfpath.name)[1] alfpath = alfpath.parent files_alf, attributes = filter_by(alfpath, object=object, **kwargs) # raise error if no files found if not files_alf: err_str = f'object "{object}"' if object else 'ALF files' raise ALFObjectNotFound(f'No {err_str} found in {alfpath}') return [alfpath.joinpath(f) for f in files_alf], attributes
[docs] def iter_sessions(root_dir, pattern='*'): """ Recursively iterate over session paths in a given directory. Parameters ---------- root_dir : str, pathlib.Path The folder to look for sessions. pattern : str Glob pattern to use. Default searches all folders. Providing a more specific pattern makes this more performant (see examples). Yields ------- pathlib.Path The next session path in lexicographical order. Examples -------- Efficient iteration when `root_dir` contains <lab>/Subjects folders >>> sessions = list(iter_sessions(root_dir, pattern='*/Subjects/*/????-??-??/*')) Efficient iteration when `root_dir` contains subject folders >>> sessions = list(iter_sessions(root_dir, pattern='*/????-??-??/*')) """ if spec.is_session_path(root_dir): yield root_dir for path in sorted(Path(root_dir).rglob(pattern)): if path.is_dir() and spec.is_session_path(path): yield path
[docs] def iter_datasets(session_path): """ Iterate over all files in a session, and yield relative dataset paths. Parameters ---------- session_path : str, pathlib.Path The folder to look for datasets. Yields ------- pathlib.Path The next dataset path (relative to the session path) in lexicographical order. """ for p in sorted(Path(session_path).rglob('*.*')): if not p.is_dir() and spec.is_valid(p.name): yield p.relative_to(session_path)
[docs] def exists(alfpath, object, attributes=None, **kwargs) -> bool: """ Test if ALF object and optionally specific attributes exist in the given path Parameters ---------- alfpath : str, pathlib.Path The folder to look into object : str ALF object name attributes : str, list Wanted attributes wildcards : bool If true uses unix shell style pattern matching, otherwise uses regular expressions kwargs Other ALF parts to filter by Returns ------- bool For multiple attributes, returns True only if all attributes are found """ # if the object is not found, return False try: _, attributes_found = _ls(alfpath, object, **kwargs) except (FileNotFoundError, ALFObjectNotFound): return False # if object found and no attribute provided, True if not attributes: return True # if attributes provided, test if all are found if isinstance(attributes, str): attributes = [attributes] attributes_found = set(part[2] for part in attributes_found) return set(attributes).issubset(attributes_found)
[docs] def load_object(alfpath, object=None, short_keys=False, **kwargs): """Reads all files sharing the same object name. For example, if the file provided to the function is `spikes.times`, the function will load `spikes.times`, `spikes.clusters`, `spikes.depths`, `spike.amps` in a dictionary whose keys will be `times`, `clusters`, `depths`, `amps` Full Reference here: https://int-brain-lab.github.io/ONE/alf_intro.html Simplified example: _namespace_object.attribute_timescale.part1.part2.extension Parameters ---------- alfpath : str, pathlib.Path, list Any ALF path pertaining to the object OR directory containing ALFs OR list of paths. object : str, list, None The ALF object(s) to filter by. If a directory is provided and object is None, all valid ALF files returned. short_keys : bool By default, the output dictionary keys will be compounds of attributes, timescale and any eventual parts separated by a dot. Use True to shorten the keys to the attribute and timescale. wildcards : bool If true uses unix shell style pattern matching, otherwise uses regular expressions. kwargs Other ALF parts to filter by. Returns ------- AlfBunch An ALFBunch (dict-like) of all attributes pertaining to the object. Examples -------- Load 'spikes' object >>> spikes = load_object('full/path/to/my/alffolder/', 'spikes') Load 'trials' object under the 'ibl' namespace >>> trials = load_object('/subject/2021-01-01/001', 'trials', namespace='ibl') """ if isinstance(alfpath, (Path, str)): if Path(alfpath).is_dir() and object is None: raise ValueError('If a directory is provided, the object name should be provided too') files_alf, parts = _ls(alfpath, object, **kwargs) else: # A list of paths allows us to load an object from different revisions files_alf = alfpath parts = [files.filename_parts(x.name) for x in files_alf] assert len(set(p[1] for p in parts)) == 1 object = next(x[1] for x in parts) # Take attribute and timescale from parts list attributes = [p[2] if not p[3] else '_'.join(p[2:4]) for p in parts] if not short_keys: # Include extra parts in the keys attributes = ['.'.join(filter(None, (attr, p[4]))) for attr, p in zip(attributes, parts)] # TODO List duplicates; raise ALFError assert len(set(attributes)) == len(attributes), ( f'multiple object {object} with the same attribute in {alfpath}, restrict parts/namespace') out = AlfBunch({}) # load content for each file for fil, att in zip(files_alf, attributes): # if there is a corresponding metadata file, read it: meta_data_file = _find_metadata(fil) # if this is the actual meta-data file, skip and it will be read later if meta_data_file == fil: continue out[att] = load_file_content(fil) if meta_data_file: meta = load_file_content(meta_data_file) # the columns keyword splits array along the last dimension if 'columns' in meta.keys(): out.update({v: out[att][::, k] for k, v in enumerate(meta['columns'])}) out.pop(att) meta.pop('columns') # if there is other stuff in the dictionary, save it, otherwise disregard if meta: out[att + 'metadata'] = meta # Merge 'table' dataframe into bunch table_key = next(filter(re.compile(r'^table([_.]|$)').match, out), None) # py 3.8 if table_key: table = out.pop(table_key) def rename_columns(field): """ For each field name in the DataFrame, return a new one that includes any timescale or extra ALF parts found in table_key. For example... with table_key = table_clock, field1 -> field1_clock; with table_key = table_clock.extra, field1_0 -> field1_clock.extra_0; with table_key = table, field1 -> field1 """ return (field[:-2] + table_key[5:] + field[-2:] if re.match(r'.+?_[01]$', field) else field + table_key[5:]) table.rename(columns=rename_columns, inplace=True) out.update(AlfBunch.from_df(table)) status = out.check_dimensions timeseries = [k for k in out.keys() if 'timestamps' in k] if any(timeseries) and len(out.keys()) > len(timeseries) and status == 0: # Get length of one of the other arrays ignore = ('timestamps', 'meta') n_samples = next(v for k, v in out.items() if not any(x in k for x in ignore)).shape[0] for key in timeseries: # Expand timeseries if necessary out[key] = ts2vec(out[key], n_samples) if status != 0: supported = (np.ndarray, pd.DataFrame) print_sizes = '\n'.join( f'{v.shape},\t{k}' for k, v in out.items() if isinstance(v, supported) ) _logger.warning(f'Inconsistent dimensions for object: {object} \n{print_sizes}') return out
[docs] def save_object_npy(alfpath, dico, object, parts=None, namespace=None, timescale=None) -> list: """ Saves a dictionary in `ALF format`_ using object as object name and dictionary keys as attribute names. Dimensions have to be consistent. Simplified ALF example: _namespace_object.attribute.part1.part2.extension Parameters ---------- alfpath : str, pathlib.Path Path of the folder to save data to dico : dict Dictionary to save to npy; keys correspond to ALF attributes object : str Name of the object to save parts : str, list, None Extra parts to the ALF name namespace : str, None The optional namespace of the object timescale : str, None The optional timescale of the object Returns ------- list List of written files Examples -------- >>> spikes = {'times': np.arange(50), 'depths': np.random.random(50)} >>> files = save_object_npy('/path/to/my/alffolder/', spikes, 'spikes') .. _ALF format: https://int-brain-lab.github.io/ONE/alf_intro.html """ alfpath = Path(alfpath) status = check_dimensions(dico) if status != 0: raise ValueError('Dimensions are not consistent to save all arrays in ALF format: ' + str([(k, v.shape) for k, v in dico.items()])) out_files = [] for k, v in dico.items(): out_file = alfpath / spec.to_alf(object, k, 'npy', extra=parts, namespace=namespace, timescale=timescale) np.save(out_file, v) out_files.append(out_file) return out_files
[docs] def save_metadata(file_alf, dico) -> None: """Writes a meta data file matching a current ALF file object. For example given an alf file `clusters.ccfLocation.ssv` this will write a dictionary in JSON format in `clusters.ccfLocation.metadata.json` Reserved keywords: - **columns**: column names for binary tables. - **row**: row names for binary tables. - **unit** Parameters ---------- file_alf : str, pathlib.Path Full path to the alf object dico : dict, ALFBunch Dictionary containing meta-data """ assert spec.is_valid(file_alf.parts[-1]), 'ALF filename not valid' file_meta_data = file_alf.parent / (file_alf.stem + '.metadata.json') with open(file_meta_data, 'w+') as fid: fid.write(json.dumps(dico, indent=1))
[docs] def remove_uuid_file(file_path, dry=False) -> Path: """ (DEPRECATED) Renames a file without the UUID and returns the new pathlib.Path object. Parameters ---------- file_path : str, pathlib.Path An ALF path containing a UUID in the file name. dry : bool If False, the file is not renamed on disk. Returns ------- pathlib.Path The new file path without the UUID in the file name. """ warnings.warn( 'remove_uuid_file deprecated, use one.alf.files.remove_uuid_string instead', DeprecationWarning) file_path = Path(file_path) new_path = files.remove_uuid_string(file_path) if new_path == file_path: return new_path if not dry and file_path.exists(): file_path.replace(new_path) return new_path
[docs] def remove_uuid_recursive(folder, dry=False) -> None: """ (DEPRECATED) Within a folder, recursive renaming of all files to remove UUID. Parameters ---------- folder : str, pathlib.Path A folder to recursively iterate, removing UUIDs from the file names. dry : bool If False renames the files on disk. """ warnings.warn( 'remove_uuid_recursive is deprecated and will be removed in the next release', DeprecationWarning) for fn in Path(folder).rglob('*.*'): print(remove_uuid_file(fn, dry=dry))
[docs] def next_num_folder(session_date_folder: Union[str, Path]) -> str: """Return the next number for a session given a session_date_folder.""" session_date_folder = Path(session_date_folder) if not session_date_folder.exists(): return '001' session_nums = [ int(x.name) for x in session_date_folder.iterdir() if x.is_dir() and not x.name.startswith('.') and x.name.isdigit() ] out = f'{max(session_nums or [0]) + 1:03d}' assert len(out) == 3, 'ALF spec does not support session numbers > 999' return out
[docs] def remove_empty_folders(folder: Union[str, Path]) -> None: """Iteratively remove any empty child folders.""" all_folders = sorted(x for x in Path(folder).rglob('*') if x.is_dir()) for f in reversed(all_folders): # Reversed sorted ensures we remove deepest first try: f.rmdir() except Exception: continue
[docs] def filter_by(alf_path, wildcards=True, **kwargs): """ Given a path and optional filters, returns all ALF files and their associated parts. The filters constitute a logical AND. For all but `extra`, if a list is provided, one or more elements must match (a logical OR). Parameters ---------- alf_path : str, pathlib.Path A path to a folder containing ALF datasets wildcards : bool If true, kwargs are matched as unix-style patterns, otherwise as regular expressions object : str, list Filter by a given object (e.g. 'spikes') attribute : str, list Filter by a given attribute (e.g. 'intervals') extension : str, list Filter by extension (e.g. 'npy') namespace : str, list Filter by a given namespace (e.g. 'ibl') or None for files without one timescale : str, list Filter by a given timescale (e.g. 'bpod') or None for files without one extra : str, list Filter by extra parameters (e.g. 'raw') or None for files without extra parts NB: Wild cards not permitted here. Returns ------- alf_files : str A Path to a directory containing ALF files attributes : list of dicts A list of parsed file parts Examples -------- Filter files with universal timescale >>> filter_by(alf_path, timescale=None) Filter files by a given ALF object >>> filter_by(alf_path, object='wheel') Filter using wildcard, e.g. 'wheel' and 'wheelMoves' ALF objects >>> filter_by(alf_path, object='wh*') Filter all intervals that are in bpod time >>> filter_by(alf_path, attribute='intervals', timescale='bpod') Filter all files containing either 'intervals' OR 'timestamps' attributes >>> filter_by(alf_path, attribute=['intervals', 'timestamps']) Filter all files using a regular expression >>> filter_by(alf_path, object='^wheel.*', wildcards=False) >>> filter_by(alf_path, object=['^wheel$', '.*Moves'], wildcards=False) """ alf_files = [f for f in os.listdir(alf_path) if spec.is_valid(f)] attributes = [files.filename_parts(f, as_dict=True) for f in alf_files] if kwargs: # Validate keyword arguments against regex group names invalid = kwargs.keys() - spec.regex(FILE_SPEC).groupindex.keys() if invalid: raise TypeError('%s() got an unexpected keyword argument "%s"' % (__name__, set(invalid).pop())) # # Ensure 'extra' input is a list; if str split on dot if 'extra' in kwargs and isinstance(kwargs['extra'], str): kwargs['extra'] = kwargs['extra'].split('.') def _match(part, pattern, split=None): if pattern is None or part is None: # If either is None, both should be None to match return pattern is part elif split: # Check all provided extra fields match those in ALF return all(elem in part.split(split) for elem in pattern if elem) elif not isinstance(pattern, str): if wildcards: return any(_match(part, x, split) for x in pattern) else: return re.match('|'.join(pattern), part) is not None else: # Check given attribute matches, allowing wildcards return fnmatch(part, pattern) if wildcards else re.match(pattern, part) is not None # Iterate over ALF files for file, attr in zip(alf_files.copy(), attributes.copy()): for k, v in kwargs.items(): # Iterate over attributes match = _match(attr[k], v, '.' if k == 'extra' else None) if not match: # Remove file from list and move on to next file alf_files.remove(file) attributes.remove(attr) break return alf_files, [tuple(attr.values()) for attr in attributes]
[docs] def find_variants(file_list, namespace=True, timescale=True, extra=True, extension=True): """ Find variant datasets. Finds any datasets on disk that are considered a variant of the input datasets. At minimum, a dataset is uniquely defined by session path, collection, object and attribute. Therefore, datasets with the same name and collection in a different revision folder are considered a variant. If any of the keyword arguments are set to False, those parts are ignored when comparing datasets. Parameters ---------- file_list : list of str, list of pathlib.Path A list of ALF paths to find variants of. namespace : bool If true, treat datasets with a different namespace as unique. timescale : bool If true, treat datasets with a different timescale as unique. extra : bool If true, treat datasets with a different extra parts as unique. extension : bool If true, treat datasets with a different extension as unique. Returns ------- Dict[pathlib.Path, list of pathlib.Path] A map of input file paths to a list variant dataset paths. Raises ------ ValueError One or more input file paths are not valid ALF datasets. Examples -------- Find all datasets with an identical name and collection in a different revision folder >>> find_variants(['/sub/2020-10-01/001/alf/#2020-01-01#/obj.attr.npy']) {Path('/sub/2020-10-01/001/alf/#2020-01-01#/obj.attr.npy'): [ Path('/sub/2020-10-01/001/alf/obj.attr.npy') ]} Find all datasets with different namespace or revision >>> find_variants(['/sub/2020-10-01/001/alf/#2020-01-01#/obj.attr.npy'], namespace=False) {Path('/sub/2020-10-01/001/#2020-01-01#/obj.attr.npy'): [ Path('/sub/2020-10-01/001/#2020-01-01#/_ns_obj.attr.npy'), Path('/sub/2020-10-01/001/obj.attr.npy'), ]} """ # Parse into individual ALF parts to_parts_dict = partial(files.full_path_parts, as_dict=True) uParts = map(to_parts_dict, file_list) # Initialize map of unique files to their duplicates duplicates = {} # Determine which parts to filter variables = locals() filters = {'namespace', 'timescale', 'extra', 'extension'} to_compare = ('lab', 'subject', 'date', 'number', 'collection', 'object', 'attribute', *(arg for arg in filters if variables[arg])) def parts_match(parts, file): """Compare a file's unique parts to a given file""" other = to_parts_dict(file) return all(parts[k] == other[k] for k in to_compare) # iterate over unique files and their parts for f, parts in zip(map(Path, file_list), uParts): # first glob for files matching object.attribute (including revisions) pattern = f'*{parts["object"]}.{parts["attribute"]}*' # this works because revision will always be last folder; # i.e. revisions can't contain collections globbed = map(files.without_revision(f).parent.glob, (pattern, '#*#/' + pattern)) globbed = chain.from_iterable(globbed) # unite revision and non-revision globs # refine duplicates based on other parts (this also ensures we don't catch similar objects) globbed = filter(partial(parts_match, parts), globbed) # key = f.relative_to(one.alf.files.get_session_path(f)).as_posix() duplicates[f] = [x for x in globbed if x != f] # map file to list of its duplicates return duplicates